Next Generation Multicast VPN (NG-MVPN) configuration example

Next Generation Multicast VPN (NG-mVPN)

NG-mVPN is a next-generation multicast distribution technology that is predominantly used in service provider networks and addresses scalability and manageability issues associated with the previous generation of SP Multicast VPN (Draft Rosen).

In this article, we will go through configuration steps you’d need to undertake to configure NG-mVPN in a Juniper environment. We will also discuss BGP advertisements that are associated with multicast sources and receivers connected to the network.
Continue reading “Next Generation Multicast VPN (NG-MVPN) configuration example”

EVPN FAQ

What is EVPN?

Ethernet VPN (EVPN) is a new technology that is used to extend Ethernet circuits across Data Center and Service Provider networks. It is expected to succeed other L2VPN transport methods such as BGP-based L2VPN (RFC6624), LDP-Based L2VPN (RFC4906) and VPLS.

EVPN introduces a set of new features that were not available in L2VPN and VPLS environments, most noticeable of which are All-Active Multi-homing across multiple PE devices and more efficient handling of L2 Multicast traffic.

Refer to RFC 7209 to better understand the rationale for creating EVPN.
Continue reading “EVPN FAQ”

EVPN MPLS Port-Based VLAN-Aware Bundle Service

In this article, we will review EVPN MPLS Port-Based VLAN-Aware Bundle Service  configuration example using Juniper MX devices. As per Port-Based VLAN-Aware service definition in RFC7432, all of the VLANs on the port are part of the same service and are mapped to a single bundle without any VID translation.

EVPN VLAN-Aware Bundle Service
EVPN VLAN-Aware Bundle Service

In our sample, we will add L3 IRB interfaces to VLANs, simulating L3 Default Gateways.
Continue reading “EVPN MPLS Port-Based VLAN-Aware Bundle Service”

EVPN MPLS Service Types Illustrated

EVPN VLAN-Based Service

With this service interface, an EVPN instance consists of only a single broadcast domain (e.g., a single VLAN).  Therefore, there is a one-to-one mapping between a VID on this interface and a MAC-VRF. Since a MAC-VRF corresponds to a single VLAN, it consists of a single bridge table corresponding to that VLAN.

EVPN VLAN-Based Service
EVPN VLAN-Based Service

Click here for Juniper MX Configuration Example.

Continue reading “EVPN MPLS Service Types Illustrated”

EVPN MPLS Service Types

Broadcast Domains

(VLANs)

Bridge Table MAC VLAN to MAC-VRF Mapping Ethernet TAG ID VID Translation
VLAN-Based Service Single Single Can overlap between VLANs one-to-one 0 Egress PE
VLAN Bundle Service Multiple Single Unique for all VLANs many-to-one 0 Not Supported
Port-Based Service Multiple Single Unique for all VLAN many-to-one 0 Not Supported
VLAN-Aware Bundle Service Multiple One per VLAN Can overlap between VLANs many-to-one VID or normalized TAG ID

 

Supported
Port-Based VLAN-Aware Service Multiple One per VLAN Can overlap between VLANs many-to-one VID

 

Not Supported

For more information on EVPN, please refer to our other articles on this topic:

http://www.bgphelp.com/tag/evpn/

EVPN Type 2 (MAC/IP Advertisement route) Explained

Type 2 routes are used to advertise MAC addresses and IP addresses that might be associated with aforementioned MAC addresses.

In order to advertise Type 2 routes, PE needs to learn MAC addresses from the directly attached CEs. This is done via normal data-plane learning mechanisms. RFC 7432 also allows for MAC address learning via control plane interaction between PE and CE, although we have not see this implemented by any vendors.

Continue reading “EVPN Type 2 (MAC/IP Advertisement route) Explained”

EVPN Type 1 (Ethernet Auto-Discovery) Explained

Type 1 advertisements are used for two distinct functions – Fast Convergence and Aliasing. EVPN Fast Convergence allows PE devices to change the next-hop adjacencies for all MAC addresses associated with a particular Ethernet Segment. EVPN aliasing allows traffic to be balanced across multiple egress points.

Type 1 routes are only advertised if Ethernet Segment Identifier is set to non-zero value, meaning that Type 1 routes are only originate for multi-homed sites.

Please refer to the following cheatsheet if you are not familiar with EVPN Terminology.

Continue reading “EVPN Type 1 (Ethernet Auto-Discovery) Explained”

EVPN Terminology Reference (RFC 7432, etc)

  • AC, A-C: Attachment Circuit
  • AD, A-D: Ethernet Auto-Discovery route
  • Ethernet Segment (ES): When a customer site (device or network) is connected to one or more PEs via a set of Ethernet links, then that set of links is referred to as an ‘Ethernet segment’.
  • Ethernet Segment Identifier (ESI): A unique non-zero identifier that identifies an Ethernet segment is called an ‘Ethernet Segment Identifier’. ESI 0 denotes a single-homed site.  ESI {0xFF} (repeated 10 times) is known as MAX-ESI.
  • Ethernet Tag: An Ethernet tag identifies a particular broadcast domain, e.g., a VLAN. An EVPN instance consists of one or more broadcast domains.
  • Ethernet Tag ID: 32-bit field containing either a 12-bit or 24-bit identifier that identifies a particular broadcast domain (e.g., a VLAN) in an EVPN instance.
  • EVI: An EVPN Instance spanning the Provider Edge (PE) devices participating in that EVPN.
  • EVPN: Ethernet Virtual Private Network.
  • IPL: IP address length
  • IRB: Integrated Routing and Bridging interface
  • NVE: Network Virtualization Edge
  • MAC-VRF: A Virtual Routing and Forwarding table for Media Access Control (MAC) addresses on a PE.
  • MAX-ET: Reserved Ethernet Tag ID {0xFFFFFFFF} is known as MAX-ET
  • MAX-ESI: Reserved ESI {0xFFFFFFFFFFFFFFFFFFFF} is known as MAX-ESI
  • ML: MAC address length
  • TS: Tenant System
  • VA: Virtual Appliance